
# Aktuelles aus Studien und Leitlinien





## **LEITLINIEN**











S2k-Leitlinie
Behandlung thermischer
Verletzungen im Kindesalter

vom 15.08.2024





5 Kernaussagen zur Präklinik



# Kernaussage 1: Kühlung ist Laienhilfe

#### Empfehlung 7

Geprüft, Stand (2024)

Aus analgetischen Gründen können kleinere Verbrennungen an den Extremitäten für einen

Zeitraum von maximal 10 Minuten mit handwarmem Wasser bis zum Eintreffen der

Notärztin lokal gekühlt werden.

Konsensstärke: 100 % (12/12)





# Kernaussage 1: Kühlung ist Laienhilfe

Eine weitere Kühlung durch medizinisches Fachpersonal ist obsolet. Ebenso die Anwendung von Verbrennungs-Gel-Kompressen und Kühlpacks. Diese bieten keine nachgewiesenen Vorteile und erhöhen möglicherweise das Risiko einer weiteren Senkung der Körpertemperatur.





# Kernaussage 1: Kühlung ist Laienhilfe

Eine weitere Kühlung durch medizinisches Fachpersonal ist obsolet. Ebenso die Anwendung von Verbrennungs-Gel-Kompressen und Kühlpacks. Diese bieten keine nachgewiesenen Vorteile und erhöhen möglicherweise das Risiko einer weiteren Senkung der Körpertemperatur.





# Kernaussage 2: Immer Analgesie!

#### 5.2 Analgosedierung

Oberste Priorität hat die Schmerzbehandlung. Mit dem Einsatz von Esketamin (Ketanest S®) sowie Opiaten, z.B. Fentanyl in Kombination mit Midazolam, lässt sich im Notfall rasch Schmerzfreiheit erzielen. Wenn am Unfallort kein intravenöser Zugang gelegt werden kann, lässt sich Esketamin sowohl intranasal (mit speziellem Sprühapplikator) als auch rektal verabreichen.

Peripher wirkende Analgetika ermöglichen allein keine ausreichende Analgesie und sollten daher nur in Kombination mit Opiaten verabreicht werden [10].





# aus der Leitlinie 2024:

| Dosisempfehlungen für Sedativa und Analgetika |                                                                                                         |                        |                                                                              |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------|
| Medikament                                    | Dosis                                                                                                   | Indikation             | Besonderheiten                                                               |
| Midazolam                                     | <ul> <li>i.v. 0,1 mg/kg KG</li></ul>                                                                    | Anxiolyse<br>Sedierung | i.n.: unangenehme<br>Applikation über<br>MAD*                                |
| Esketamin                                     | <ul> <li>i.v. 0,5-1 mg/kg KG Bolus<br/>0,25-0,5 mg/kg KG Repetition</li> <li>i.n. 2 mg/kg KG</li> </ul> | Sedierung<br>Analgesie | Kombination mit<br>Sedativum zur<br>Reduktion der<br>psychomimetischen<br>NW |
| Fentanyl                                      | <ul> <li>i.v. 1 – 2 μg/ kg KG</li> <li>i.n. 1 – 2 μg/kg KG</li> </ul>                                   | Analgesie              | b. Bed. Wiederholen<br>NW: Apnoe                                             |
| Piritramid                                    | <ul> <li>i.v. 0,05-0,1 mg/kg KG Bolus,</li> <li>0,05 mg/kg Repetition</li> </ul>                        | Analgesie              | Apnoe bei Repetition<br>Übelkeit                                             |

<sup>\*</sup>MAD: Mucosal Atomization Device: Bei intranasaler Gabe über MAD sollte die Applikation in beide Nasenlöcher erfolgen und 0,5 ml (- max 1 ml bei größeren Kindern) / Gabe / Nasenloch möglichst nicht überschritten werden.

Tabelle 2: Dosisempfehlung für Sedativa und Analgetika





WTF?

## aus der Leitlinie 2015:

<u>Dosisempfehlungen</u>: Ketamin: 2 - 4 mg/ kg KG i.v./ intraossär

Ketamin: 10 mg/kg/KG rektal

Ketamin S: 1,5 – 3 mg/kg KG i.v. / intraossär

Fentanyl: 0,001 - 0,01 mg/ kg KG i.v.

Piritramid: 0,05 - 0,1 mg/ kg KG i.v.

Midazolam: 0.05 - 0.1 - (0.2) mg/kg KG i.v.





# Kernaussage 2: Volumentherapie nur bei Indikation

#### 5.3 Infusionstherapie

#### Empfehlung 10

Geprüft, Stand (2024)

Bei brandverletzten Kindern ab etwa 10% betroffener VKOF soll die Volumensubstitution

mit isotonen, kristalloiden Lösungen erfolgen.

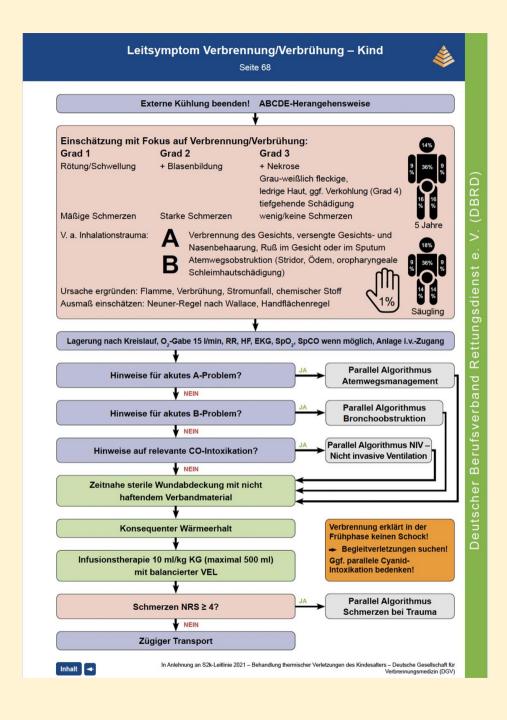
Eine Menge von 10ml/kg Körpergewicht/h sollte dabei initial nicht überschritten werden.

Konsensstärke: 100 % (12/12)



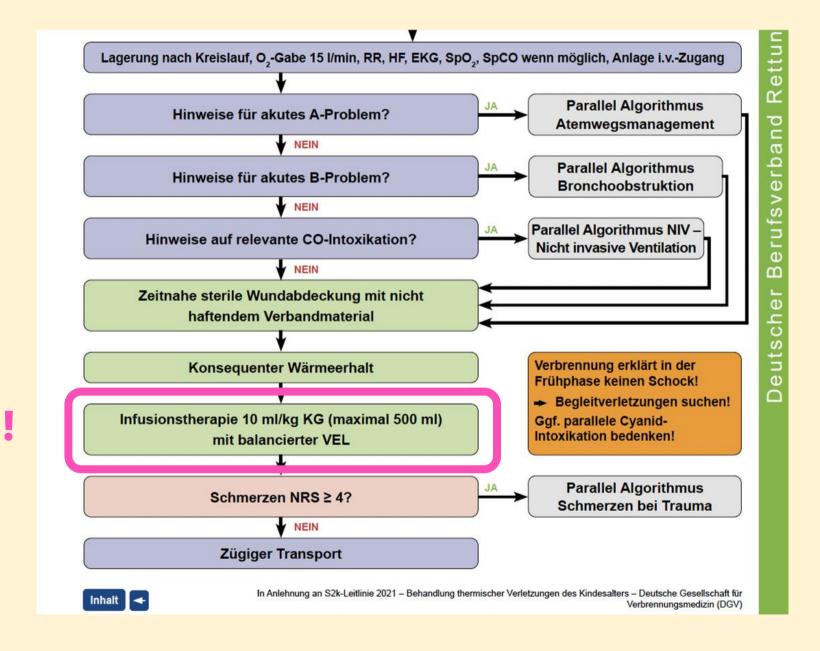


# Kernaussage 3: Volumentherapie nur bei Indikation


Bei <10% betroffener VKOF kann auf das Legen eines Zuganges verzichtet werden, falls dies nicht sofort gelingt und das nächste Krankenhaus innerhalb von 30 min erreicht werden kann. Wegen des Risikos eines Volumenmangelschocks sollte ab etwa 10% VKOF mindestens ein (großlumiger) peripher-venöser Zugang gelegt werden. Die Zugänge sollten sich möglichst nicht in geschädigten Hautarealen befinden. Kann kein i.v. Zugang gelegt werden, so ist unter Berücksichtigung der Transportdauer nur bei großflächigen Verletzungen eine intraossäre Flüssigkeitssubstitution zu erwägen [14,15].






















# Kernaussage 4: Hypothermie vermeiden

Während des Transports, der bei Kindern und Jugendlichen in Begleitung einer Notärztin erfolgen sollte, ist eine Kühlung obsolet. Das Kind bzw. der Jugendliche muss unbedingt vor Wärmeverlust geschützt und es sollte stets die Temperatur gemessen werden [2,18]. Der Erhalt der Normothermie kann zum Beispiel durch ein aufgeheiztes Transportmittel oder Wärmedecken erreicht werden. Es ist zudem auf eine ausreichende Analgesie und ggf. Sedierung zu achten (siehe Kapitel 4.2).





# Kernaussage 5: Kinder ins Verbrennungszentrum

- Verbrennungen 2. Grades von 10% und mehr der K\u00f6rperoberfl\u00e4che
- Verbrennungen 3. Grades von 5% und mehr der Körperoberfläche
- Verbrennungen 2. und 3. Grades oder entsprechende Schädigung durch chemische Substanzen mit Lokalisation im Gesicht, an der Hand, am Fuß oder im Genitalbereich mit relevanter Größe und Tiefe - einschließlich der durch elektrischen Strom verursachten thermischen Schäden und über großen Gelenken.
- Inhalationstraumata, auch in Verbindung mit leichten äußeren Verbrennungen (vom Vorhandensein eines solchen ist grundsätzlich bei Explosionsunfällen auszugehen)
- Thermomechanische Kombinationsverletzungen
- Verätzungen mit Laugen oder Säuren
- Alle thermischen Verletzungen 4. Grades.





# Kernaussage 5: Kinder ins Verbrennungszentrum

## Empfehlung 11

geprüft

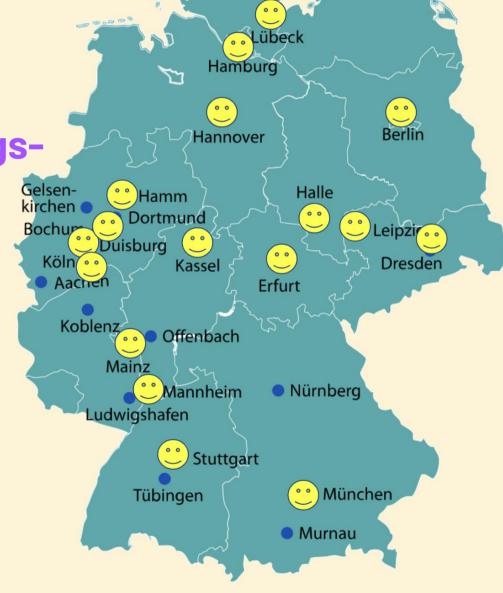
Stand (2024)

Bei thermisch verletzten Kindern und Jugendlichen, die keine Zentrumsindikationen haben, sollte zumindest eine Vorstellung bzw. Verlegung in eine spezialisierte Klinik für

brandverletzte Kinder erfolgen.

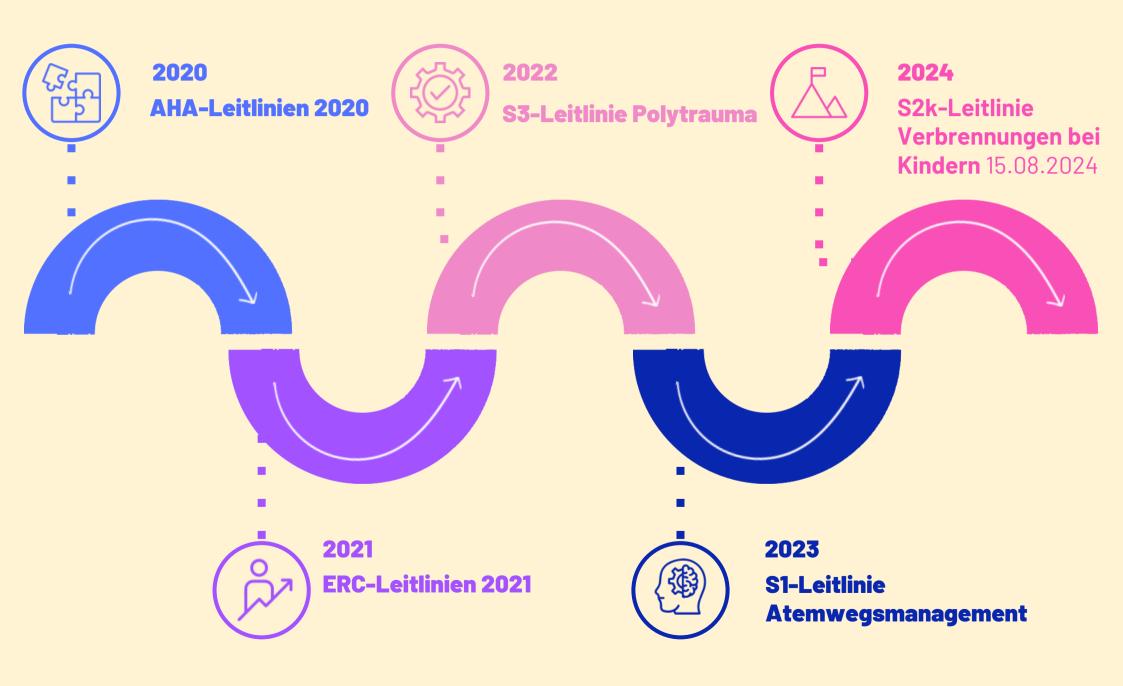
Konsensstärke: 100 % (11/11)



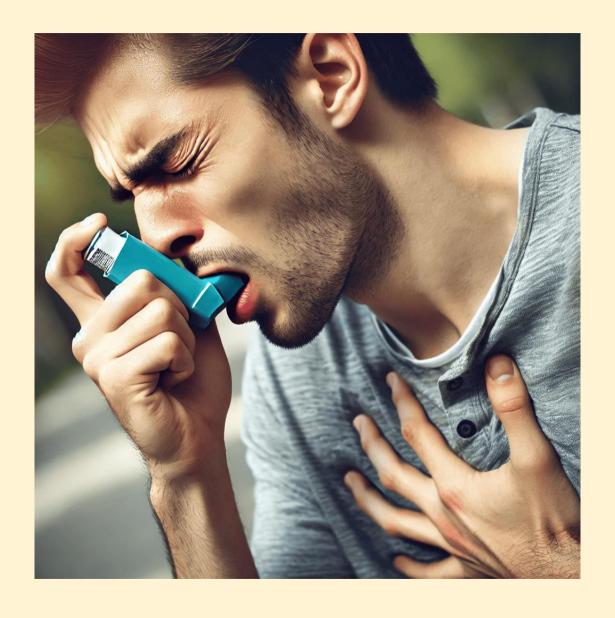



Verbrennungs-

betten


für

**Kinder** 





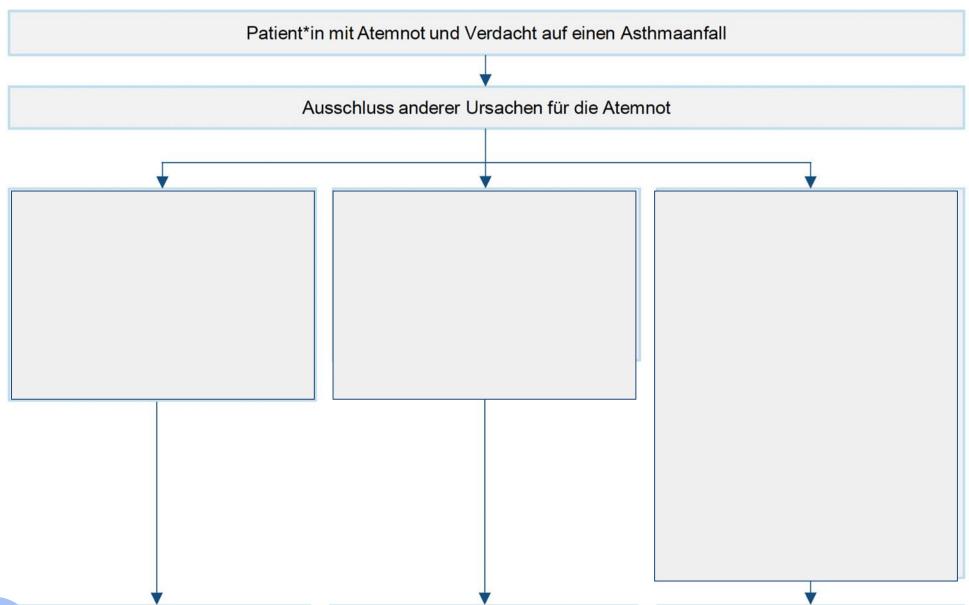

# **LEITLINIEN**





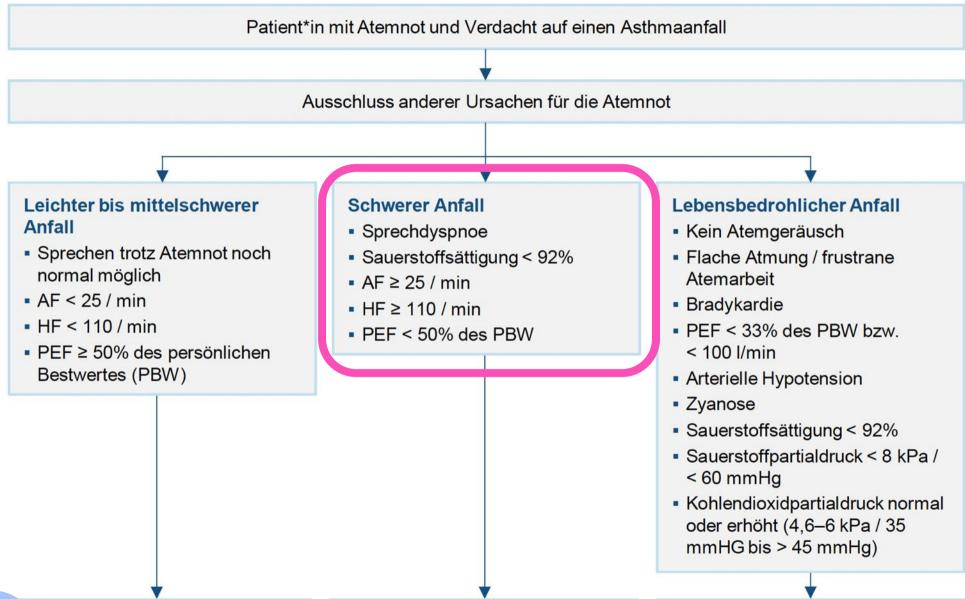







# Nationale Versorgungsleitlinie Asthma


Version 5 vom 23.08.2024















#### Initialtherapie

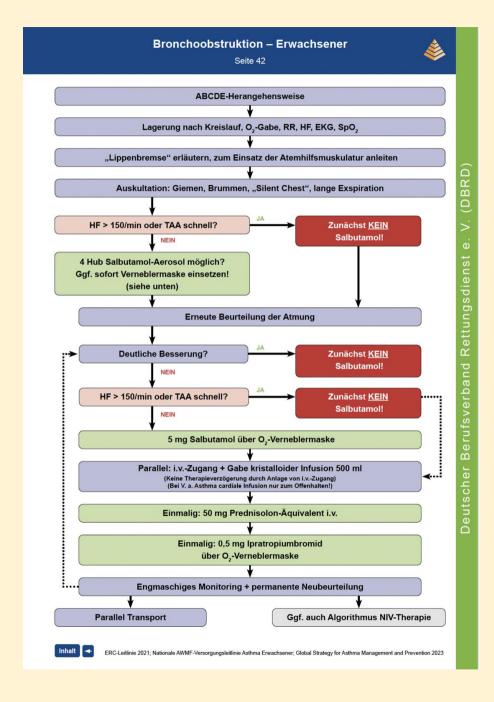
- Atmungserleichternde Körperstellung, dosierte Lippenbremse
- 2–4 Hübe eines SABA (Dosieraerosol, ggf. mit Spacer) ggf. nach 10–15 Minuten wiederholen
- 20-50 mg
   Prednisolonäquivalent oral

# Einweisung in Krankenhaus erwägen und Initialtherapie

- Sauerstoff (Ziel: Sättigung 92–96%; bei Hyperkapnierisiko 88–92%)
- Atmungserleichternde Körperstellung, dosierte Lippenbremse
- 2-4 Hübe eines SABA (Dosieraerosol, ggf. mit Spacer) ggf. nach 10-15 Minuten wiederholen
- 40-50 mg Prednisolonäquivalent oral oder i.v.
- Falls vorhanden:
   Ipratropiumbromid 0,5 mg
   vernebelt oder 80 µg aus einem
   MDI mit Spacer

#### Umgehende Einweisung ins Krankenhaus mit Notarztbegleitung und Initialtherapie

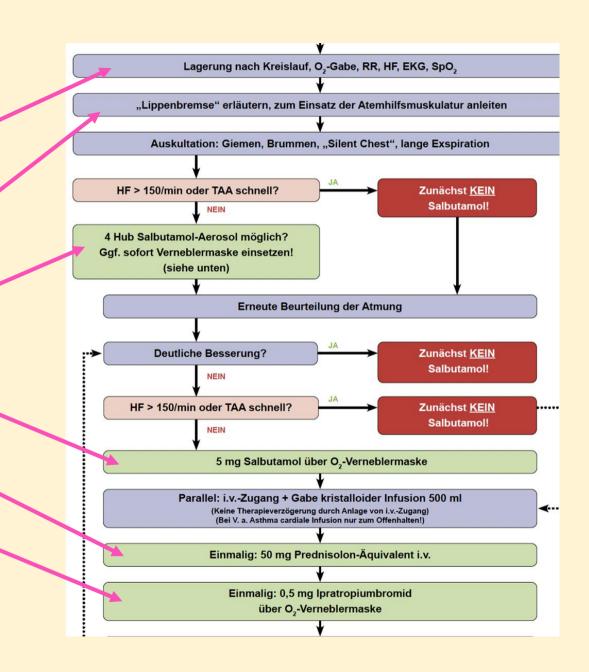
- Sauerstoff (Ziel: Sättigung 92–96%; bei Hyperkapnierisiko 88–92%)
- Atmungserleichternde Körperstellung, dosierte Lippenbremse
- 50–100 mg Prednisolonäquivalent oral oder i.v.
- 2–4 Hübe eines SABA (Dosieraerosol, ggf. mit Spacer) ggf. nach 10–15 Minuten wiederholen
- Falls vorhanden: Ipratropiumbromid 0,5 mg vernebelt oder 80 µg aus einem MDI mit Spacer














# Einweisung in Krankenhaus erwägen und Initialtherapie

- Sauerstoff (Ziel: Sättigung 92–96%; bei Hyperkapnierisiko 88–92%)
- Atmungserleichternde Körperstellung, dosierte Lippenbremse
- 2-4 Hübe eines SABA (Dosieraerosol, ggf. mit Spacer) ggf. nach 10-15 Minuten wiederholen
- 40-50 mg Prednisolonäquivalent oral oder i.v.
- Falls vorhanden:
   Ipratropiumbromid 0,5 mg
   vernebelt oder 80 µg aus einem
   MDI mit Spacer





# Einweisung in Krankenhaus erwägen und Initialtherapie

- Sauerstoff (Ziel: Sättigung 92–96%; bei Hyperkapnierisiko 88–92%)
- Atmungserleichternde Körperstellung, dosierte Lippenbremse
- 2-4 Hübe eines SABA
   (Dosieraerosol, ggf. mit Spacer)
   ggf. nach 10-15 Minuten
   wiederholen
- 40-50 mg Prednisolonäquivalent oral oder i.v.
- Falls vorhanden:
   Ipratropiumbromid 0,5 mg
   vernebelt oder 80 µg aus einem
   MDI mit Spacer

lst
Inhalieren = Inhalieren?





# RESPIRATORY CARE

search

Advanced Search

Home Content Authors Reviewers CRCE Open Forum Podcast Videos X f in

# Randomized Controlled Trial Assessing a Vibrating Mesh Nebulizer Compared to a Jet Nebulizer in Severe Asthma Exacerbations

Haval Chweich, Najia Idrees, Jesse Rideout, Brien Barnewolt, Lauren Rice and Nicholas S Hill Respiratory Care March 2024. 69 (3) 345-348: DOI: https://doi.org/10.4187/respcare.10980

Article Figures & Data Info & Metrics References

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

nebulizer asthma vibrating mesh exacerbation emergency department

# RESPIRATORY CARE Vol. 69, Issue 3 1 Mar 2024 Table of Contents Ta

#### Introduction

Asthma exacerbations are a frequent cause of emergency department visits and hospital admissions. In patients with peak expiratory flow (PEF) < 50% of predicted, a larger improvement in PEF at 30 min after the initial bronchodilator treatment is associated with favorable outcomes.<sup>1,-,4</sup> It is possible that the delivery method of bronchodilator in the emergency department impacts patient response to bronchodilators.<sup>5</sup>







#### International Journal of Chronic Obstructive Pulmonary Disease

**Doverress** 

open access to scientific and medical research



REVIEW

## Comparison of the Application of Vibrating Mesh Nebulizer and Jet Nebulizer in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis

Zhouzhou Feng 601, Zhengcai Han1, Yaqin Wang1, Hong Guo1, Jian Liu 601,2

<sup>1</sup>The First Clinical Medical College of Lanzhou University, Lanzhou City, People's Republic of China; <sup>2</sup>Gansu Maternal and Child Health Hospital/Gansu Central Hospital, Lanzhou City, People's Republic of China

Correspondence: Jian Liu, Department of Clinical Medicine, the First Clinical Medical College of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou City, Gansu Province, People's Republic of China, Tel +86 136 0935 4197, Email medecinliu@sina.com

**Objective:** To comparison of the application of Vibrating Mesh Nebulizer and Jet Nebulizer in chronic obstructive pulmonary disease (COPD).

**Research Methods:** This systematic review and meta-analysis was conducted following the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) statements. The primary outcome measures analyzed included: The amount of inhaler in the urine sample at 30 minutes after inhalation therapy (USAL0.5), The total amount of inhaler in urine sample within 24 hours (USAL24), Aerosol emitted, Forced expiratory volume in 1 second (FEV<sub>1</sub>), Forced vital capacity (FVC).

Results: Ten studies were included with a total of 314 study participants, including 157 subjects in the VMN group and 157 subjects in the JN group. The data analysis results of USAL0.5, MD (1.88 [95% CI, 0.95 to 2.81], P = 0.000), showed a statistically significant difference. USAL24, MD (1.61 [95% CI, 1.14 to 2.09], P = 0.000), showed a statistically significant difference. The results of aerosol emitted showed a statistically significant difference in MD (3.44 [95% CI, 2.84 to 4.04], P = 0.000). The results of FEV<sub>1</sub> showed MD (0.05 [95% CI, -0.24 to 0.35], P=0.716), the results were not statistically significant. The results of FVC showed MD (0.11 [95% CI, -0.18 to 0.41], P=0.459), the results were not statistically significant. It suggests that VMN is better than JN and provides higher aerosols, but there is no difference in improving lung function between them.

**Conclusion:** VMN is significantly better than JN in terms of drug delivery and utilization in the treatment of patients with COPD. However, in the future use of nebulizers, it is important to select a matching nebulizer based on a combination of factors such as mechanism of action of the nebulizer, disease type and comorbidities, ventilation strategies and modes, drug formulations, as well as cost-effectiveness, in order to achieve the ideal treatment of COPD.

Keywords: chronic obstructive pulmonary disease, aerosol, vibrating mesh nebulizers, jet nebulizers, meta-analysis





#### International Journal of Chronic Obstructive Pulmonary Disease

**Doverress** 

open access to scientific and medical research



REVIEW

## Comparison of the Application of Vibrating Mesh Nebulizer and Jet Nebulizer in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis

Zhouzhou Feng 601, Zhengcai Han1, Yaqin Wang1, Hong Guo1, Jian Liu 601,2

<sup>1</sup>The First Clinical Medical College of Lanzhou University, Lanzhou City, People's Republic of China; <sup>2</sup>Gansu Maternal and Child Health Hospital/Gansu Central Hospital, Lanzhou City, People's Republic of China

Correspondence: Jian Liu, Department of Clinical Medicine, the First Clinical Medical College of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou City, Gansu Province, People's Republic of China, Tel +86 136 0935 4197, Email medecinliu@sina.com

**Objective:** To comparison of the application of Vibrating Mesh Nebulizer and Jet Nebulizer in chronic obstructive pulmonary disease (COPD).

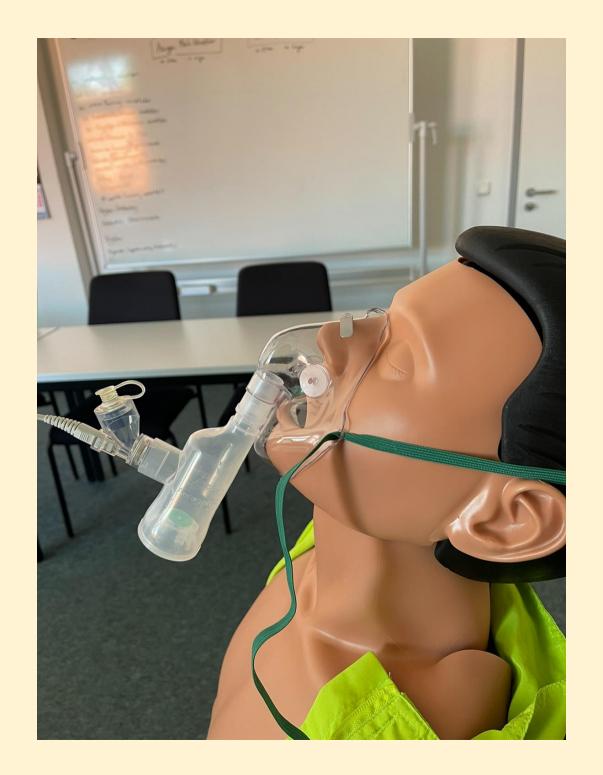
**Research Methods:** This systematic review and meta-analysis was conducted following the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) statements. The primary outcome measures analyzed included: The amount of inhaler in the urine sample at 30 minutes after inhalation therapy (USAL0.5), The total amount of inhaler in urine sample within 24 hours (USAL24), Aerosol emitted, Forced expiratory volume in 1 second (FEV<sub>1</sub>), Forced vital capacity (FVC).

Results: Ten studies were included with a total of 314 study participants, including 157 subjects in the VMN group and 157 subjects in the JN group. The data analysis results of USAL0.5, MD (1.88 [95% CI, 0.95 to 2.81], P = 0.000), showed a statistically significant difference. USAL24, MD (1.61 [95% CI, 1.14 to 2.09], P = 0.000), showed a statistically significant difference. The results of aerosol emitted showed a statistically significant difference in MD (3.44 [95% CI, 2.84 to 4.04], P = 0.000). The results of FEV<sub>1</sub> showed MD (0.05 [95% CI, -0.24 to 0.35], P=0.716), the results were not statistically significant. The results of FVC showed MD (0.11 [95% CI, -0.18 to 0.41], P=0.459), the results were not statistically significant. It suggests that VMN is better than JN and provides higher aerosols, but there is no difference in improving lung function between them.

**Conclusion:** VMN is significantly better than JN in terms of drug delivery and utilization in the treatment of patients with COPD. However, in the future use of nebulizers, it is important to select a matching nebulizer based on a combination of factors such as mechanism of action of the nebulizer, disease type and comorbidities, ventilation strategies and modes, drug formulations, as well as cost-effectiveness, in order to achieve the ideal treatment of COPD.

Keywords: chronic obstructive pulmonary disease, aerosol, vibrating mesh nebulizers, jet nebulizers, meta-analysis






Jet-Vernebler



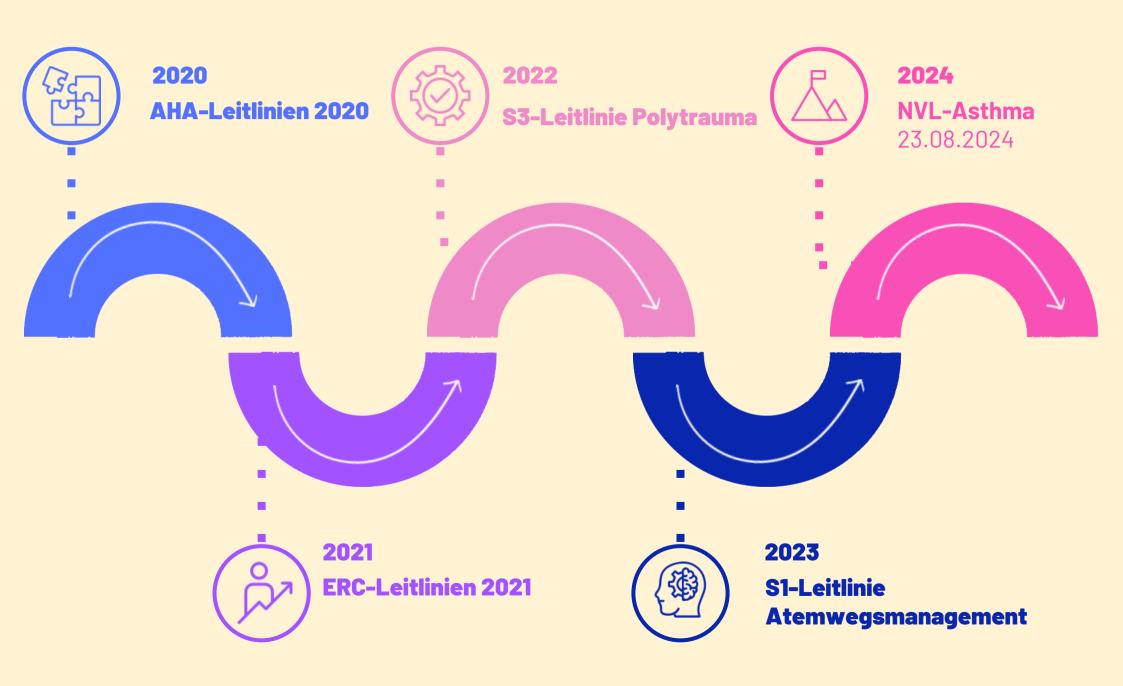


# Mesh-Vernebler

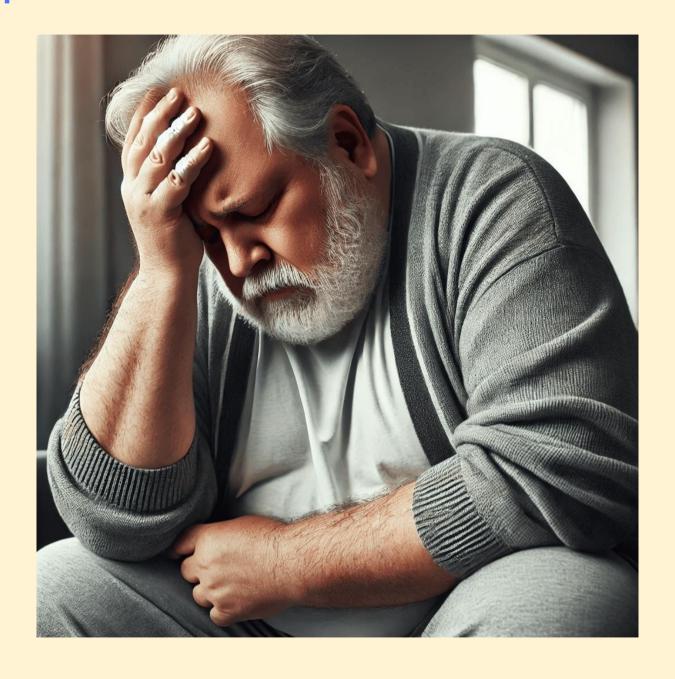







# Mesh-Vernebler







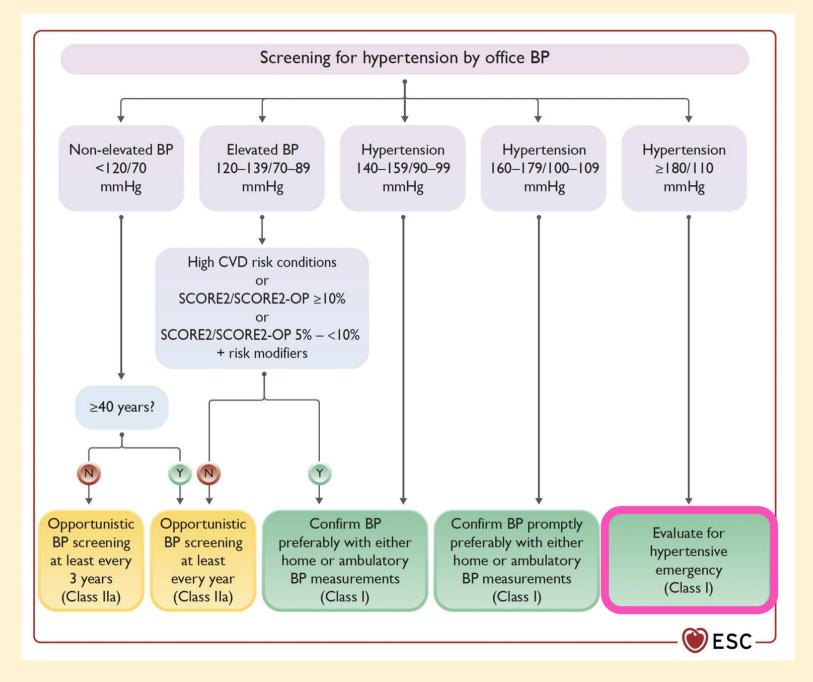

# **LEITLINIEN**














2024 ESC Guidelines for the management of elevated blood pressure and hypertension

vom 30.08.2024









# 10. Acute and short-term lowering of blood pressure

# 10.1. Acute blood pressure management in hypertensive emergencies

# 10.1.1. Definition and characteristics of hypertensive emergencies

Hypertensive emergency is defined as BP of  $\geq$ 180/110 mmHg (see Figure 10) associated with acute HMOD, often in the presence of symptoms. Hypertensive emergencies are potentially life-threatening and require immediate and careful intervention to reduce BP, often with i.v. therapy.

Symptoms of hypertensive emergency depend on the organs affected but may include headache, visual disturbances, chest pain, shortness of breath, dizziness, and other neurological deficits. In patients with hypertensive encephalopathy, somnolence, lethargy, tonic—clonic seizures, and cortical blindness may precede a loss of consciousness; however, focal neurological lesions are rare and should raise the suspicion of stroke.

As outlined in Section 7, we define HMOD among patients with chronically elevated BP or hypertension as the presence of specific cardiac, vascular, and renal alterations. However, in the setting of hypertensive emergency, more acute manifestations of organ damage are relevant for management.

# **Hypertensiver Notfall:**

Blutdruck > 180/110 mmHg

und

hypertensiv bedingte

Organdysfunktion (HMOD)

<u>oder</u>

klinische Zustände, die eine Blutdrucksenkung erfordern





# 10. Acute and short-term lowering of blood pressure

# 10.1. Acute blood pressure management in hypertensive emergencies

# 10.1.1. Definition and characteristics of hypertensive emergencies

Hypertensive emergency is defined as BP of  $\geq$ 180/110 mmHg (see *Figure 10*) associated with acute HMOD, often in the presence of symptoms. Hypertensive emergencies are potentially life-threatening and require immediate and careful intervention to reduce BP, often with i.v. therapy.

Symptoms of hypertensive emergency depend on the organs affected but may include headache, visual disturbances, chest pain, shortness of breath, dizziness, and other neurological deficits. In patients with hypertensive encephalopathy, somnolence, lethargy, tonic—clonic seizures, and cortical blindness may precede a loss of consciousness; however, focal neurological lesions are rare and should raise the suspicion of stroke.

As outlined in Section 7, we define HMOD among patients with chronically elevated BP or hypertension as the presence of specific cardiac, vascular, and renal alterations. However, in the setting of hypertensive emergency, more acute manifestations of organ damage are relevant for management.

# Symptomatik für HMOD

- Kopfschmerzen
- Sehstörungen
- Thoraxschmerzen
- Atemnot
- Schwindel
- Lethargie / Somnolenz
- andere neurol. Ausfälle





# **AHA SCIENTIFIC STATEMENT**

# The Management of Elevated Blood Pressure in the Acute Care Setting: A Scientific Statement From the American Heart Association

Adam P. Bress, PharmD, MS, Chair; Timothy S. Anderson, MD, MAS; John M. Flack, MD, MPH, FAHA; Lama Ghazi, MD, PhD; Michael E. Hall, MD, MS, FAHA; Cheryl L. Laffer, MD, PhD; Carolyn H. Still, PhD; Sandra J. Taler, MD, FAHA; Kori S. Zachrison, MD, MSc, FAHA; Tara I. Chang, MD, MS, Vice Chair; on behalf of the American Heart Association Council on Hypertension; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology

**ABSTRACT:** Over the past 3 decades, a substantial body of high-quality evidence has guided the diagnosis and management of elevated blood pressure (BP) in the outpatient setting. In contrast, there is a lack of comparable evidence for guiding the management of elevated BP in the acute care setting, resulting in significant practice variation. Throughout this scientific statement, we use the terms acute care and inpatient to refer to care received in the emergency department and after admission to the hospital. Elevated inpatient BP is common and can manifest either as asymptomatic or with signs of new or worsening target-organ damage, a condition referred to as hypertensive emergency. Hypertensive emergency involves acute target-organ damage and should be treated swiftly, usually with intravenous antihypertensive medications, in a closely monitored setting. However, the risk-benefit ratio of ating or intensifying antihypertensive medications for asymptomatic elevated inpatient BP is less clear. Despite this ambig clinicians prescribe oral or intravenous antihypertensive medications in approximately one-third of cases of asymptomatic elevated inpatient BP. Recent observational studies have suggested potential harms associated with treating asymptomatic elevated inpatient BP, which brings current practice into question. Despite the ubiquity of elevated inpatient BPs, few position papers, guidelines, or consensus statements have focused on improving BP management in the acute care setting. Therefore, this scientific statement aims to synthesize the available evidence, provide suggestions for best practice based on the available evidence, identify evidence-based gaps in managing elevated inpatient BP (asymptomatic and hypertensive emergency), and highlight areas requiring further research.





Wissenschaftliche
Stellungnahme der AHA zum
Management von erhöhtem
Blutdruck

vom 13.08.2024



Table 1. Hypertensive Emergencies by Organ and Initial Treatment Approach

|                                                    | Organ                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                |                                                                      |                                                |                                                                                              |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                    | Brain                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arteries                                                                                                                       | Retina                                                               | Kidney                                         | Heart                                                                                        |
| Acute conditions indicating hypertensive emergency | Stroke Hypertensive encephalopathy (PRES) Cerebral hemorrhage                                                                                                                                                                                                                                                                                                                                                                                | Acute aortic dissection Preeclampsia, HELLP, eclampsia                                                                         | Grade III-IV Keith-<br>Wagener-Barker<br>hypertensive<br>retinopathy | Acute kidney injury Thrombotic microangiopathy | Acute heart failure Pulmonary edema Acute coronary syndrome                                  |
| Initial BP target                                  | 130 <sbp<180 1="" 15%="" 15%<="" 20%-25%="" decline="" h="" hg,="" immediate="" in="" map="" mm="" td=""><td>SBP &lt;120 mm Hg immediate Immediate SBP &lt;160 mm Hg and DBP &lt;105 mm Hg if severe</td><td>SBP &lt;180 mm Hg<br/>MAP decline of 15%</td><td>MAP decline<br/>20%-25% over<br/>several hours</td><td>SBP &lt;180 mm Hg or MAP<br/>decline 25%<br/>Immediate SBP &lt;140 mm Hg<br/>Immediate SBP &lt;140 mm Hg</td></sbp<180> | SBP <120 mm Hg immediate Immediate SBP <160 mm Hg and DBP <105 mm Hg if severe                                                 | SBP <180 mm Hg<br>MAP decline of 15%                                 | MAP decline<br>20%-25% over<br>several hours   | SBP <180 mm Hg or MAP<br>decline 25%<br>Immediate SBP <140 mm Hg<br>Immediate SBP <140 mm Hg |
| Treatment agents                                   | Labetalol<br>Nicardipine                                                                                                                                                                                                                                                                                                                                                                                                                     | Esmolol and nitroprusside,<br>nitroglycerin, or nicardipine<br>Labetalol, nicardipine,<br>magnesium sulfate, or<br>hydralazine |                                                                      | Labetalol Nicardipine Clevidipine Fenoldopam   | Nitroglycerin Nitroprusside Labetalol Clevidipine Esmolol                                    |

BP indicates blood pressure; DBP, diastolic blood pressure; HELLP, hemolysis, elevated liver enzymes, low platelets; MAP, mean arterial pressure; PRES, posterior reversible encephalopathy syndrome; and SBP, systolic blood pressure.

Data derived from Rossi et al<sup>21</sup> as part of the BARKH (brain, arteries, retina, kidney, heart) acronym designed for rapid identification of hypertensive emergencies requiring rapid parenteral treatment.





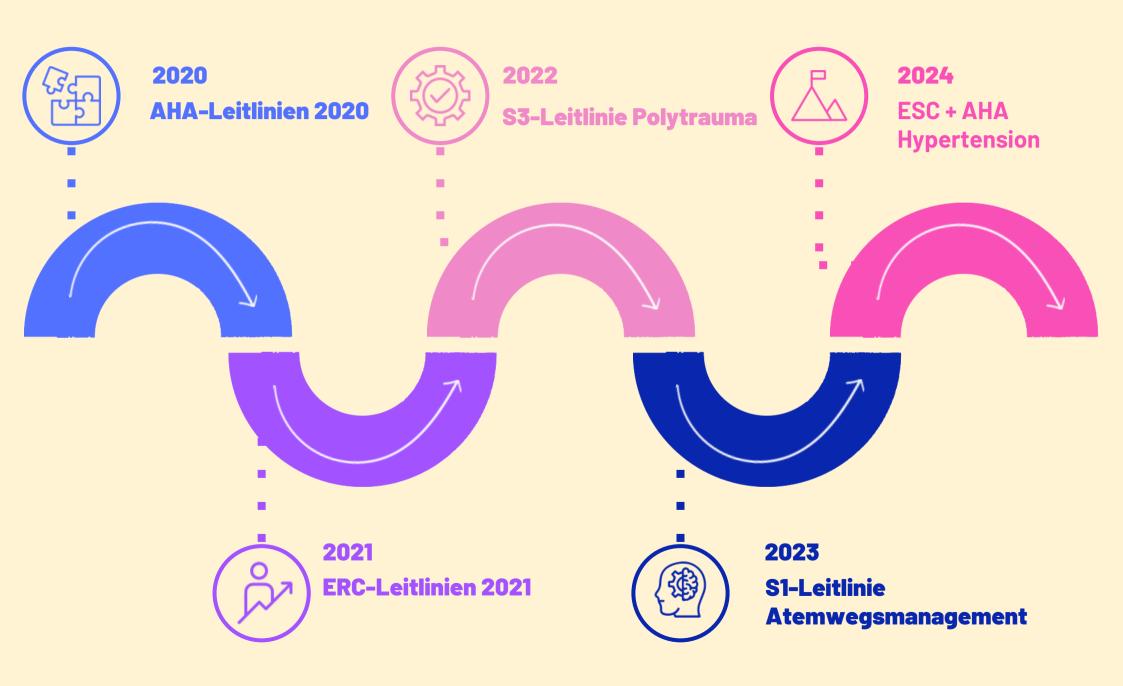


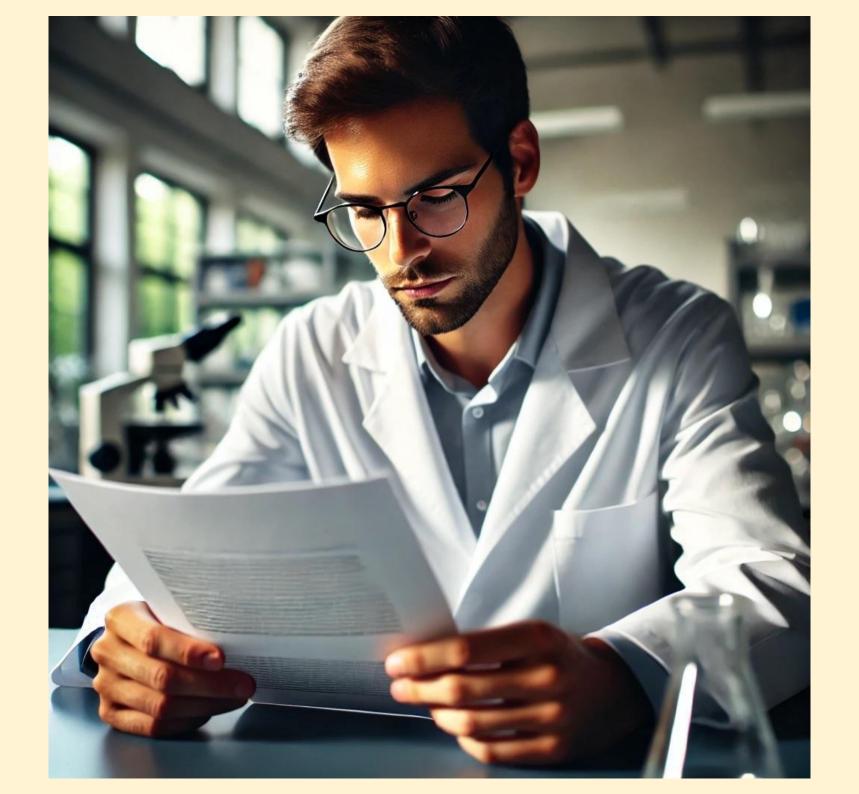
**Kein hypertensiver Notfall?** 

**Keine Notfalltherapie!** 

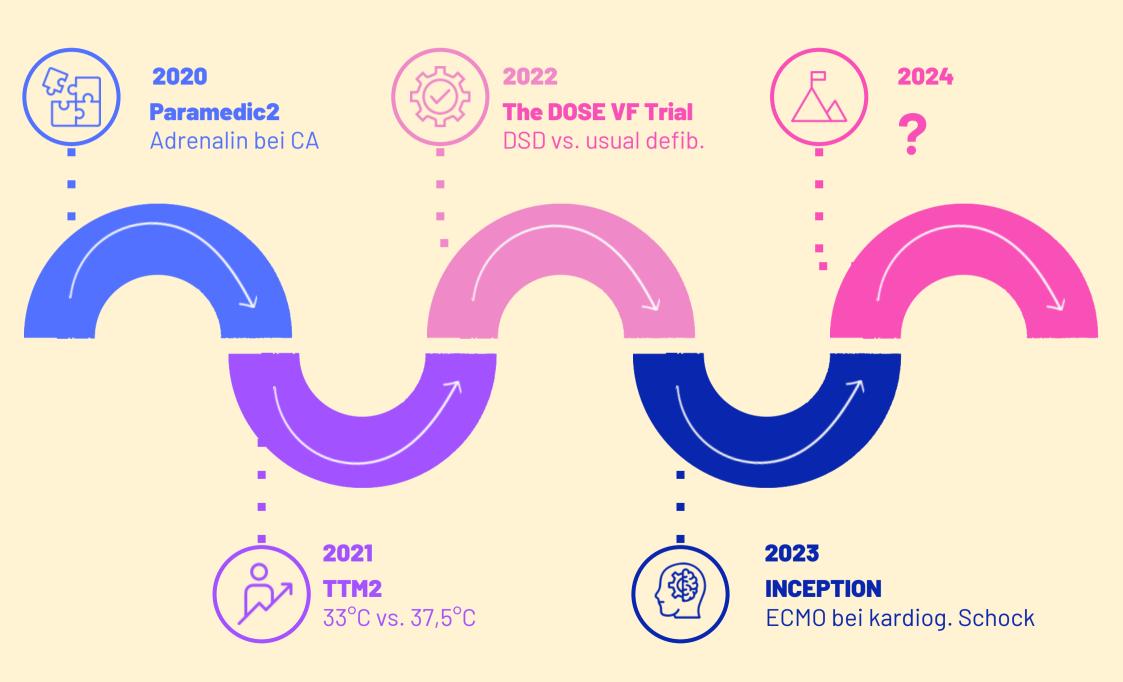








# Klären:

- Angst, Stress
- Schlafmangel
- Schmerzen
- Infekt
- Drogen
- Medikamentenfehler

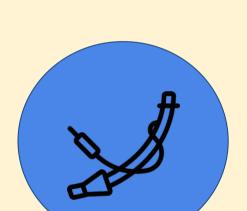



# **LEITLINIEN**





# **STUDIEN**














**Original Investigation** | Caring for the Critically Ill Patient

FREE

November 29, 2023

# Effect of Noninvasive Airway Management of Comatose Patients With Acute Poisoning

### A Randomized Clinical Trial

Yonathan Freund, MD, PhD<sup>1,2</sup>; Damien Viglino, MD, PhD<sup>3</sup>; Marine Cachanado, MSc<sup>4</sup>; et al

≫ Author Affiliations | Article Information

JAMA. 2023;330(23):2267-2274. doi:10.1001/jama.2023.24391







# **Key Points**

**Question** In patients with suspected poisoning and Glasgow Coma Scale score less than 9, is a conservative airway strategy of withholding intubation associated with a reduction of death, intensive care unit length of stay, and hospital length of stay compared with routine practice?



| <b>Gruppe 1</b> (n=116)              | <b>Gruppe 2</b> (n=109)   |  |
|--------------------------------------|---------------------------|--|
| GCS<9: keine Intubation              | GCS<9: Intubation möglich |  |
| mittleres Alter 33 Jahre (m:w 62:38) |                           |  |
| Komplikationen?                      |                           |  |
| Dauer ITS-Aufenthalt?                |                           |  |
| Dauer Krankenhausaufenthalt?         |                           |  |
| Mortalität?                          |                           |  |





# **Ergebnisse**

|                            | <b>Gruppe 1</b> (n=116) | <b>Gruppe 2</b> (n=109) |  |
|----------------------------|-------------------------|-------------------------|--|
|                            | keine Intubation        | Intubation möglich      |  |
| Intubation                 | 16,4%                   | 57,8%                   |  |
| ITS-Notwendigkeit          | 39,7%                   | 66,1%                   |  |
| ITS-Aufenthalt<br>(Median) | 0 Stunden               | 24 Stunden              |  |
| KH-Aufenthalt<br>(Median)  | 21,5 Tage               | 37 Tage                 |  |
| Verstorbene                | 0%                      | 0%                      |  |



Effect of Noninvasive Airway Management of Comatose Patients With Acute Poisoning. Yonathan Freund, Damien Viglino, Marine Cachanado et al. JAMA. 2023;330(23):2267-2274. doi:10.1001/jama.2023.24391

### Übersicht

Intensivmed 2010 · 47:513–519 DOI 10.1007/s00390-009-0107-3 Eingegangen: 27. April 2010 Akzeptiert: 12. Juni 2010 Okapte publiziert: 2. Oktober 2009 © Springer-Verlag 2009



- <sup>1</sup> Zentrale Notaufnahme, Universitätsmedizin Mannheim, Medizinische Fakultät der Universität Heidelberg, Mannheim
- <sup>2</sup> I. Medizinische Klinik (Kardiologie, Angiologie, Pneumologie, Internistische Intensivmedizin), Universitätsmedizin Mannheim, Medizinische Fakultät der Universität Heidelberg, Mannheim
- <sup>3</sup> II. Medizinische Klinik (Gastroenterologie, Hepatologie, Infektionskrankheiten), Universitätsmedizin Mannheim, Medizinische Fakultät der Universität Heidelberg
- <sup>4</sup> Institut für Klinische Radiologie und Nuklearmedizin, Universitätsmedizin Mannheim, Medizinische Fakultät der Universität Heidelberg
- <sup>5</sup> Medizinische Klinik II (Gastroenterologie und Onkologie), Klinikum Aschaffenburg

### **Akute Alkoholintoxikation**

Aktuelle Aspekte zur Risikoeinschätzung, Diagnostik und Therapie

Wenn die Beobachtung stimmt, dass das Patientenspektrum einer Notfallaufnahme soziale Probleme der Region widerspiegelt, so gilt dies in ganz besonderem Maße für die Alkoholkrankheit [26]. Der Drogen- und Suchtbericht 2009 des Bundesministeriums für Gesundheit verzeichnet für Deutschland aktuell 9,5 Mio. Menschen, die Alkohol in riskanter Weise konsumieren, 1,3 Mio. Menschen gelten derzeit als alkoholabhängig und 73.000 Menschen sterben jährlich an den Folgen des Alkoholmissbrauchs. Ein besonderes Problem stellt die exzessive Zunahme alkoholintoxikierter Kinder und Jugendlicher dar [1].

Vor diesem Hintergrund ist es nicht verwunderlich, dass Notfallaufnahmen europaweit über eine deutliche Zunahme alkoholintoxikierter Patienten berichten [7]. Der Anteil von akuten Alkoholintoxikationen am Gesamtkollektiv klinischer Notfallpatienten liegt nach vorliegenden europäischen Daten im Bereich zwischen 0,6 und 6% [4, 10, 17], in Deutschland bei etwa 3% [2]. Unsere eigenen Daten aus der Zentralen Notaufnahme des Universitätsklinikums in Mannheim zeigen mit 2,6% einen vergleichbaren Anteil von Al-koholintoxikationen am Notfallkollektiv

[9]. Auch aus der p\u00e4diatrischen Notfallmedizin bezeugen aktuelle Erfahrungen mit alkoholintoxikierten Kindern und Jugendlichen eine durchaus vergleichbare und somit erschreckende Entwicklung [20, 21].

### Pathophysiologie der Alkoholintoxikation

Die chemische Gruppe der Alkohole umfasst eine ganze Reihe von Substanzen, die in unterschiedlichem Ausmaß toxikologisch von Bedeutung sind. Ethanol wirkt direkt organtoxisch und ist der mit Abstand häufigste Alkohol, der im Rahmen von Vergiftungen im Notfalldienst gefunden wird [19]. Die Begriffe Alkohol und Ethanol werden daher in der Notfallmedizin häufig (wie auch im vorliegenden Text) synonym verwendet.

Alkohol ist wasserlöslich, wird in der Regel rasch in nahezu alle Kompartimente aufgenommen und langsam eliminiert. Die Ausscheidung erfolgt zu einem sehr geringen Teil über Lunge, Niere und Körpersekrete wie Tränen und Schweiß. Der allergrößte Teil des Alkohols wird enzymatisch über Azetaldehyd und Azetat zu Kohlendioxid und Wasser abgebaut. Von den 3 bekannten Enzymsystemen – Alkoholdehydrogenase, mikrosomales ethanoloxidierendes System (MEOS) und Katalase – ist v. a. die Alkoholdehydrogenase von entscheidender Bedeutung. Durch Induktion dieses Enzymsystems kann die Abbaurate des Alkohols erheblich beschleunigt werden, was die erhöhte Alkoholtoleranz bei chronischem Abusus erblist

### Symptomatik der Alkoholintoxikation

Die zerebralen Effekte des Alkohols sind vielfältig und - im Rahmen einer akuten Intoxikation - in erster Linie abhängig von der Alkoholkonzentration im Blut. Allerdings führt die oben beschriebene Toleranzentwicklung bei chronischem Alkoholmissbrauch zu erheblichen interindividuellen Schwankungen in der Ausprägung der Symptomatik. Während Nichtalkoholiker bereits bei einer Blutalkoholkonzentration von 0,2-0,5% Störungen der Koordination und Aufmerksamkeit aufweisen können, beobachtet man bei chronischen Alkoholikern bis zu einem Bereich von etwa 3‰ nicht ganz selten eine geradezu erstaunliche Symptomarmut.

Intensivmedizin und Notfallmedizin 7 · 2010 513



Akute Alkoholintoxikation - Aktuelle Aspekte zur Risikoeinschätzung, Diagnostik und Therapie. Dr. J. Grüttner, M. Reichert, J. Saur, M. Borggrefe, M.V. Singer, S. Haas. Intensiymed 2010 · 47:513–519 DOI 10.1007/s00390-009-0107-3





- "Primär alkoholintoxikierte Patienten haben im Notfalldienst ein insgesamt niedriges klinisches Risiko."
- "Sie zeigen häufig eine mittelschwere bis schwere Bewusstseinsstörung und erreichen hohe Blutalkoholkonzentrationen, erholen sich aber in der Regel komplikationslos."
- "Die Rate an relevanten pathologischen Begleitbefunden wie Hypotonie, Hypothermie, Hypoglykämie, Trauma oder Mischintoxikation ist gering."











Q





CIALTIES V TOPICS V MULTIMEDIA V CURRENT ISSUE V LEARNING/CME V AUTHOR CENTER PUBLICATIONS V

**ATTENTION:** Due to global market conditions, you may experience a delivery delay for your print issue of the New England Journal of Medici website. We regret any print delays and are working to ensure all issues are delivered as soon as possible.

This content is available to subscribers. Subscribe now. Already have an account

ORIGINAL ARTICLE

# Noninvasive Ventilation for Preoxygenation during Emergency Intubation

Authors: Kevin W. Gibbs, M.D. (b) , Matthew W. Semler, M.D., Brian E. Driver, M.D. (c) , Kevin P. Seitz, M.D., Susan B. Stempek, P.A., Caleb Taylor, M.D., M.P.H., Daniel Resnick-Ault, M.D., +51 , for the PREOXI Investigators and the Pragmatic Critical Care Research Group\* Author Info & Affiliations

Published June 13, 2024 | N Engl J Med 2024;390:2165-2177 | DOI: 10.1056/NEJMoa2313680 | VOL. 390 NO. 23











| Gruppe 1                     | Gruppe 2     |  |  |
|------------------------------|--------------|--|--|
| 02 15 l/min                  | NIV Fi02 1,0 |  |  |
| Narkose und Intubation       |              |  |  |
| Gibt es Hypoxämien?          |              |  |  |
| Wie ist die niedrigste Sp02? |              |  |  |
| Gibt es Hypotonien?          |              |  |  |
| Gibt es Aspirationen?        |              |  |  |





# **Ergebnisse**

|                | <b>Gruppe 1</b> (n=656) | <b>Gruppe 2</b> (n=645) |
|----------------|-------------------------|-------------------------|
|                | 02 15 I/min             | NIV Fi02 1,0            |
| Sp02<85%       | 18,5%                   | 9,1%                    |
| Sp02<70%       | 5,7%                    | 2,4%                    |
| Hypotonie      | 4,4%                    | 2,9%                    |
| Herzstillstand | 1,1%                    | 0,2%                    |
| Aspirationen   | 1,4%                    | 0,9%                    |





| PRÄKLINISCHE RSI 2.0                            |                     |  |  |
|-------------------------------------------------|---------------------|--|--|
|                                                 | Team                |  |  |
| INDIKATION, erwartete PROBLEME                  | BESPROCHEN          |  |  |
| PRÄOXYGENIERUNG läuft                           | CHECK               |  |  |
| ZUGANG mit laufender Infusion                   | CHECK               |  |  |
| KREISLAUFsituation OPTIMIERT                    | CHECK               |  |  |
| SpO2 - TON laut + NIBP - INTERVALL 2 min        | CHECK               |  |  |
| BeatmungsBEUTEL + MASKE                         | CHECK               |  |  |
| etCO2 + FILTER + GÄNSEGURGEL                    | CHECK               |  |  |
| VideoLARYNGOSKOP, SpatelGRÖSSE?                 | BESPROCHEN & BEREIT |  |  |
| TUBUS (2 Größen) + BlockSPRITZE                 | CHECK               |  |  |
| BOUGIE oder FÜHRUNGSSTAB + Gleitmittel          | BESPROCHEN & BEREIT |  |  |
| SAUERSTOFF ausreichend                          | CHECK               |  |  |
| MEDIKAMENTE + Dosierungen Katecholamine?        | BESPROCHEN & BEREIT |  |  |
| ABSAUGUNG großlumig und funktioniert            | CHECK               |  |  |
| PLAN B und PLAN C                               | BESPROCHEN & BEREIT |  |  |
| KopfPOSITION OPTIMIERT                          | CHECK               |  |  |
| "Checkliste vollständig, gibt es Unklarheiten?" |                     |  |  |





| ľ | PRÄKLINISCHE RSI 12.0                    |                     |   |  |
|---|------------------------------------------|---------------------|---|--|
| ı |                                          | Team                | l |  |
|   | INDIKATION orwartota DDORI EME           | BESDBOCHEN          |   |  |
|   | PRÄOXYGENIERUNG MIT NIV LÄUFT            | CHECK               | i |  |
| ī | 200ANO IIII Iaulendei IIIIusion          | OFILOR              | Ī |  |
| i | KREISLAUFsituation OPTIMIERT             | CHECK               | ı |  |
| i | SpO2 - TON laut + NIBP - INTERVALL 2 min | CHECK               | ı |  |
| ı | BeatmungsBEUTEL + MASKE                  | CHECK               | ı |  |
| ı | etCO2 + FILTER + GÄNSEGURGEL             | CHECK               | ı |  |
| ı | VideoLARYNGOSKOP, SpatelGRÖSSE?          | BESPROCHEN & BEREIT | l |  |
| ľ | TUBUS (2 Größen) + BlockSPRITZE          | CHECK               | i |  |
| i | BOUGIE oder FÜHRUNGSSTAB + Gleitmittel   | BESPROCHEN & BEREIT | i |  |
| ı | SAUERSTOFF ausreichend                   | CHECK               | I |  |











European Heart Journal (2020) 41, 4508-4517 European Society doi:10.1093/eurheartj/ehaa570

### CLINICAL RESEARCH

Arrhythmias

# A practical risk score for early prediction of neurological outcome after out-of-hospital cardiac arrest: MIRACLE<sub>2</sub>

Nilesh Pareek<sup>1,2</sup>\*, Peter Kordis <sup>3</sup>, Nicholas Beckley-Hoelscher<sup>4</sup>, Dominic Pimenta <sup>®</sup> <sup>5</sup>, Spela Tadel Kocjancic<sup>3</sup>, Anja Jazbec<sup>3</sup>, Joanne Nevett<sup>6</sup>, Rachael Fothergill<sup>6</sup>, Sundeep Kalra<sup>5</sup>, Tim Lockie <sup>®</sup> <sup>5</sup>, Ajay M Shah <sup>®</sup> <sup>1,2</sup>, Jonathan Byrne<sup>1,2</sup>, Marko Noc<sup>3</sup>, and Philip MacCarthy<sup>1,2</sup>

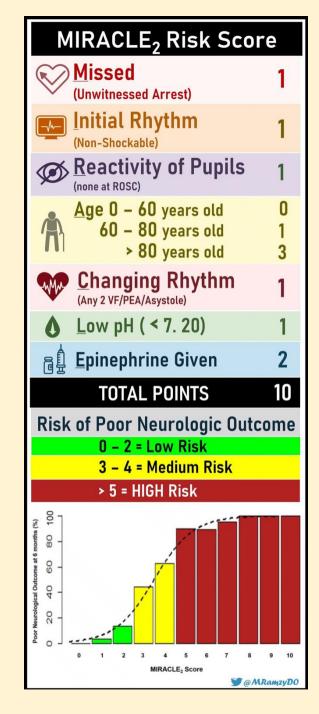
Department of Cardiology, King's College Hospital NHS Foundation Trust, Denmark Hill, London SESPRS, UK; 2School of Cardiovascular Medicine and Sciences, BHF Centre of Excellence, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK: 3 Centre for Intensive Internal Medicine, University Medical Center, Zaloska 7, Liubliana 1000, Slovenia; 4School of Population Health and Environmental Sciences, King's College London, London SE1 1UL, UK; 5Department of Cardiology, Royal Free Hospital NHS Foundation Trust, Pond St, Hampstead, London NW3 2QG, UK; and <sup>6</sup>London Ambulance Service NHS Trust, 220 Waterloo Rd, London SE1 8SD, UK

Received 26 March 2020; revised 25 May 2020; editorial decision 17 June 2020; accepted 1 July 2020; online publish-ahead-of-print 30 July 2020

See page 4518 for the editorial comment on this article (doi: 10.1093/eurheartj/ehaa673)

### Aims

The purpose of this study was to develop a practical risk score to predict poor neurological outcome after out-ofhospital cardiac arrest (OOHCA) for use on arrival to a Heart Attack Centre.


### Methods and results

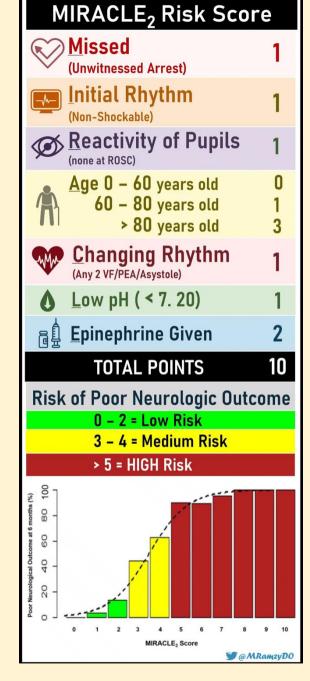
From May 2012 to December 2017, 1055 patients had OOHCA in our region, of whom 373 patients were included in the King's Out of Hospital Cardiac Arrest Registry (KOCAR). We performed prediction modelling with multivariable logistic regression to identify predictors of the primary outcome to derive a risk score. This was externally validated in two independent cohorts comprising 473 patients. The primary endpoint was poor neurological outcome at 6-month follow-up (Cerebral Performance Category 3-5). Seven independent predictors of outcome were identified: missed (unwitnessed) arrest, initial non-shockable rhythm, non-reactivity of pupils, age (60-80 years—1 point; >80 years—3 points), changing intra-arrest rhythms, low pH <7.20, and epinephrine administration (2 points). The MIRACLE<sub>2</sub> score had an area under the curve (AUC) of 0.90 in the development and 0.84/0.91 in the validation cohorts. Three risk groups were defined—low risk (MIRACLE<sub>2</sub> ≤2—5.6% risk of poor outcome); intermediate risk (MIRACLE<sub>2</sub> of 3-4-55.4% of poor outcome); and high risk (MIRACLE<sub>2</sub> ≥5-92.3% risk of poor outcome). The MIRACLE<sub>2</sub> score had superior discrimination than the OHCA [median AUC 0.83 (0.818-0.840); P < 0.001] and Cardiac Arrest Hospital Prognosis models [median AUC 0.87 (0.860-0.870; P = 0.001] and equivalent performance with the Target Temperature Management score [median AUC 0.88 (0.876-0.887); P = 0.092].

The MIRACLE<sub>2</sub> is a practical risk score for early accurate prediction of poor neurological outcome after OOHCA, which has been developed for simplicity of use on admission.

Conclusions



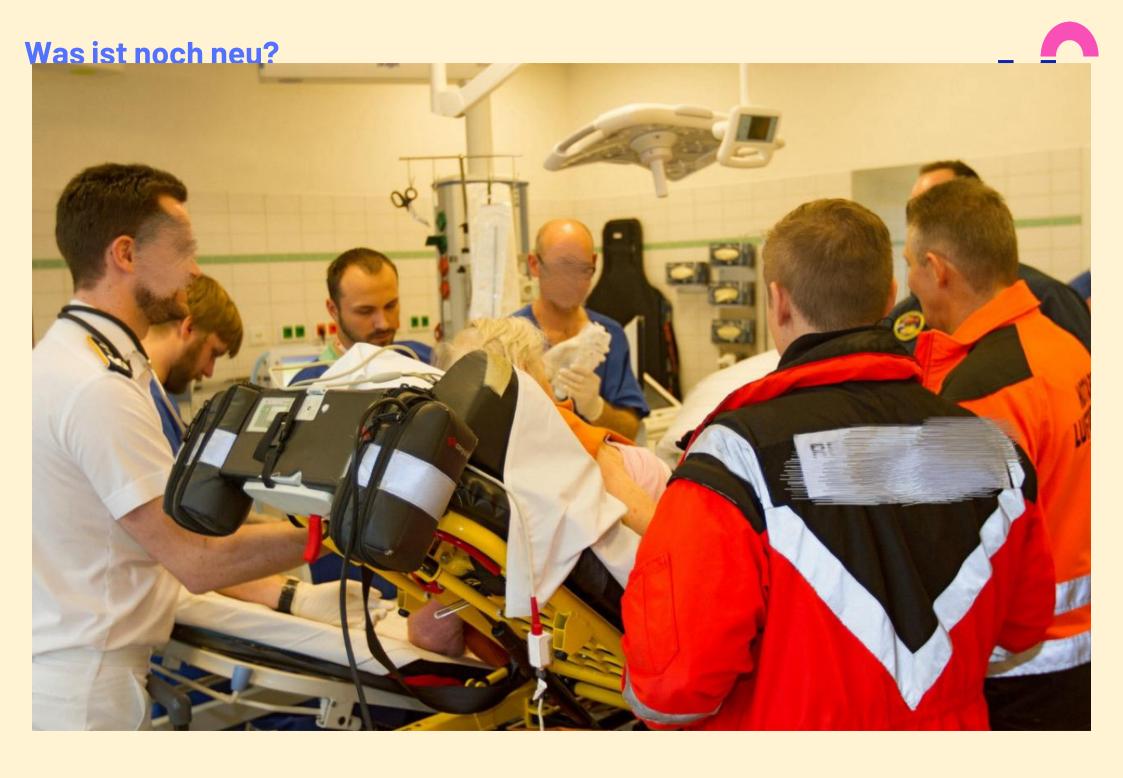












Nicholas Sunderland et al. Validation of the MIRACLE2 Score for Prognostication After Out-of-hospital Cardiac Arrest.Interventional Cardiology 2023;18:e29. DOI: <a href="https://doi.org/10.15420/icr.2023.08">https://doi.org/10.15420/icr.2023.08</a>. 29.11.2023







| MIRCALE2-<br>Score | Gutes<br>neurolog.<br>Ergebnis | Schlechtes<br>neurolog.<br>Ergebnis |
|--------------------|--------------------------------|-------------------------------------|
| =<2 Punkte         | 94%                            | 6%                                  |
| 3 und 4 Punkte     | 53%                            | <b>47</b> %                         |
| >= 5 Punkte        | 5%                             | 95%                                 |





## ATMIST

# IDEAL

**PAVIAN** 

MIST

PAR-AVISO
SBAR

iSOBAR



### **ASHICE**

4P

I-PASS

5-Finger-Methode

SOAP

IMIST-AMBO





Startseite Ein Überblick Aktuelles V

Unsere Arbeit ✓
Arbeits-und Landesgruppen

Die DGINA V

DGINA-Notfallcampus
Die DGINA-Akademie

# Patientensicherheit: DGINA fordert einheitliche standardisierte Übergabe mit der Merkhilfe "SINNHAFT"

30. August 2024

Patientensicherheit an den Übergabepunkten der Rettungskette: DGINA fordert einheitliche standardisierte Übergabe mit der Merkhilfe "SINNHAFT"

Mehr als 30.000 Mal pro Tag werden Patienten, die akut medizinische Hilfe benötigen, von einem Behandlungsteam des Rettungsdienstes an ein anderes Team übergeben. Unter hohem zeitlichen Druck werden wichtige, zum Teil lebenswichtige Informationen über zumeist instabile und kritisch kranke Akut- und Notfallpatienten am Übergabepunkt der Notfallkliniken ausgetauscht. Diese Informationen stehen nur zu diesem Zeitpunkt unmittelbar zur Verfügung und müssen sicher übermittelt werden.

Information

Veröffentlicht: 30. August 2024

Downloads

DGINA LOI SINNHAFT ↓



#### Notfall+ Rettungsmedizin

Konzepte - Stellungnahmen - Perspektiven

Notfall Rettungsmed 2022 · 25:10-18 https://doi.org/10.1007/s10049-020-00810-8 Online publiziert: 11. Dezember 2020 © Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2020



I. Gräff¹ · M. Pin² · P. Ehlers¹ · M. Seidel¹ · B. Hossfeld³ · M. Dietz-Wittstock⁴ · R. Rossi<sup>5</sup> · A. Gries<sup>6</sup> · A. Ramshorn-Zimmer<sup>6</sup> · F. Reifferscheid<sup>7</sup> · T. Reinhold<sup>8</sup> · H. Band9 · K.-H. Kuhl10 · M.-K. König11 · J. Kasberger12 · R. Löb13 · R. Krings14 · S. Schäfer 15 · I.-M. Wienen 16 · R. Strametz 17 · K. Wedler 18 · C. Mach 19 · D. Werner 20 · S. Schacher<sup>21</sup>

Abteilung für Klinische Akut- und Notfallmedizin, Universitätsklinikum Bonn, Bonn, Deutschland: <sup>2</sup>Zentrale Interdisziplinäre Notaufnahme, Florence-Nightingale-Krankenhaus Düsseldorf, Düsseldorf, Deutschland; <sup>3</sup>Klinik für Anästhesiologie, Intensivmedizin, Notfallmedizin u. Schmerztherapie, Bundeswehrkrankenhaus Ulm, Ulm, Deutschland; \*Zentrale Notaufnahme, Diakonissenkrankenhaus Flensburg, Flensburg, Deutschland; <sup>3</sup> Notarztdienst Landkreis Schwäbisch Hall, Schwäbisch Hall, Deutschland; "Zentrale Notfallaufnahme, Universitätsklinikum Leipzig, Leipzig, Deutschland; "Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Schleswig-Holstein, Kiel, Deutschland; \*Notaufnahme, Klinik Oranienburg Oberhavel-Kliniken GmbH, Oranienburg, Deutschland; <sup>3</sup> Verband der Feuerwehren in Nordrhein-Westfalen, Wuppertal, Deutschland: <sup>10</sup> Arbeitsgemeinschaft der Leiter der Berufsfeuerwehren, Bonn, Deutschland: "Deutscher Berufsverband Rettungsdienst Lübeck. Lübeck, Deutschland: 12 Deutsches Rotes Kreuz, Landesverband Nordrhein e. V., Düsseldorf, Deutschland: 13 Klinik für Anästhesiologie, Intensiv-, Notfall- und Schmerztherapie, St. Barbara-Klinik Hamm, Hamm, Deutschland: 14 Johanniter-Unfall-Hilfe, Landesverband Nordrhein-Westfalen, Köln, Deutschland: Arbeiter-Samariter-Bund, Köln, Deutschland: 16 Falck Notfallrettung und Krankentransport, Region Nordrhein-Westfalen, Köln, Deutschland: "Hochschule Rhein Main, Wiesbaden, Deutschland: 3 Christliche Akademie für Gesundheits- und Pflegeberufe Halle Deutschland: 37 Zentrale Notaufnahme Uniklinik RWTH Aachen Aachen Deutschland: 30 ADAC Luftrettung München München Deutschland: 21 Zentrale Notaufnahme, Evangelisches Krankenhaus Köln Kalk, Köln, Deutschland

#### **Empfehlungen zum** strukturierten Übergabeprozess in der zentralen Notaufnahme

Konsensuspapier von DGINA, DIVI, BAND, BV-AELRD, VDF, AGBF, DBRD, DRK, MHD, JUH, ASB, FALCK, APS, ABNP, DRF, ADAC

#### Zusatzmaterial online

Die Online-Version dieses Beitrags (https://doi.org/10.1007/s10049-020-00810-8) enthält eine Zusammenfassung der gängigsten Merkhilfen (Mnemonics).

Beitrag und Zusatzmaterial stehen Ihnen auf www.springermedizin.de zur Verfügung. Bitte geben Sie dort den Beitragstitel in die Suche ein, das Zusatzmaterial finden Sie beim Beitrag unter "Ergänzende Inhalte".

#### **Einleitung**

Ziel des vorliegenden Konsensuspapiers ist es, nach Analyse der aktuellen Datenlage konkrete Empfehlungen für den Übergabeprozess in der zentralen

Notaufnahme hinsichtlich Inhalten und Struktur zu machen. Mit der Übergabe vom Rettungsdienst an die zentrale Notaufnahme beginnt für eine Vielzahl von Notfallpatienten der klinische Behandlungsprozess, welcher den im Folgenden beschriebenen Rahmenbedingungen unterliegt. Daher liegt der Hauptfokus des Konsensuspapiers auf dieser Schnitt-/Nahtstelle. Darüber hinaus lassen sich Kernbestandteile der Übergabe bzw. des Übergabeprozesses und somit die ausgesprochenen Empfehlungen auch auf andere Schnittstellen, wie z. B. die innerklinischen, übertragen.

Die Übergabe in der Medizin ist definiert als die Übertragung der Verantwortlichkeit und Zuständigkeit für einige oder alle Aspekte der Versorgung eines oder mehrerer Patienten an eine andere Person oder Berufsgruppe für vorübergehende oder längere Zeit [1, 2].

Als Bestandteil eines Gesamtbehandlungsprozesses schließt sie einerseits die präklinische Versorgung ab und muss andererseits an der Nahtstelle zur zentralen Notaufnahme (ZNA) durch die Weitergabe der bisherigen Behandlungs- und Patienteninformationen die Kontinuität und Sicherheit im Gesamtbehandlungsprozess gewährleisten. Nach der Übergabe beginnt der innerklinische Behand-

In der Regel existiert für die mündliche/schriftliche Übergabe und die Übermittlung patientenrelevanter Informationen nur eine einmalige Möglichkeit. Der Übergabe kommt somit eine immense Bedeutung zu ([3]; Abb. 1).



| WENN | ÜBERGABE, | DANN | SINNHAF | = |
|------|-----------|------|---------|---|
|------|-----------|------|---------|---|





| _                |                                                                                                                                                        |                                                                                  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| START            | RUHE! Bereit für die Übergabe? Face-to-Face-Kommunikation! Möglichst alle Manipulationen/Tätigkeiten am Patienten vermeiden                            |                                                                                  |  |
| IDENTIFIKATION   | Geschlecht, Nachname und Alter<br>Pädiatrisch: Zusätzlich Gewichtsangabe                                                                               |                                                                                  |  |
| NOTFALLEREIGNIS  | <ol> <li>Was? (Leitsymptom/Verdachtsdiagnose)</li> <li>Wie? (Ursache)</li> </ol>                                                                       | 3. Wann? (Zeitpunkt des Ereignisses) Optional: Wo/Woher? (Ort/Auffindesituation) |  |
| NOTFALLPRIORITÄT | Notfallpriorität anhand des cABCDE-Schemas mit pathologischen Untersuchungsbefunden und pathologischen Vitalparametern                                 |                                                                                  |  |
| HANDLUNG         | Durchgeführte <b>Handlungen:</b> Maßnahme, Dosis/Umfang/Zeitpunkt, Wirkung, bewusst unterlassene Handlungen (falls zutreffend)                         |                                                                                  |  |
| ANAMNESE         | Allergien, Medikation, Vorerkrankungen, Infektionen,<br>Soziales/Organisatorisches, Besonderheiten                                                     |                                                                                  |  |
| FAZIT            | Wiederholung durch das aufnehmende Personal: Identifikation, Notfallereignis, Notfallpriorität (ohne Vitalp.) gekoppelt an die Handlung (ohne Wirkung) |                                                                                  |  |
| TEAMFRAGEN       | Möglichkeit für zusätzliche <u>wesentliche</u> Fragen von dem aufnehmenden Personal                                                                    |                                                                                  |  |
|                  |                                                                                                                                                        |                                                                                  |  |

#### Literatur

1. Gräff I, Ehlers P, Schacher S (2023) SINNHAFT- Die Merkhilfe für die standardisierte Übergabe in der Zentralen Notaufnahme. Notfall Rettungsmed. https://doi.org/10.1007/s10049-023-01167-4





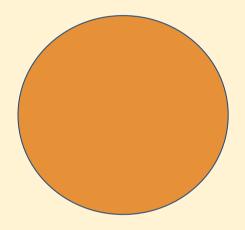
### WENN ÜBERGABE, DANN SINNHAFT

| ST.    | ART            | RUHE! Bereit für die Übergabe? Face-to<br>Möglichst alle Manipulationen/Tätigkei |
|--------|----------------|----------------------------------------------------------------------------------|
| IDE    | ENTIFIKATION   | Geschlecht, Nachname und Alter<br>Pädiatrisch: Zusätzlich Gewichtsangabe         |
| NO NO  | TFALLEREIGNIS  | <ol> <li>Was? (Leitsymptom/Verdachtsdiagr</li> <li>Wie? (Ursache)</li> </ol>     |
|        |                |                                                                                  |
| NO NO  | TFALLPRIORITÄT | Notfallpriorität anhand des cABCDE-Sound pathologischen Vitalparametern          |
| Н      | NDLUNG         | Durchgeführte <b>Handlungen:</b> Maßnahm unterlassene Handlungen (falls zutreffe |
|        |                |                                                                                  |
| (A) AN | AMNESE         | Allergien, Medikation, Vorerkrankunger Soziales/Organisatorisches, Besonderh     |
|        |                |                                                                                  |
| FA     | ZIT            | Wiederholung durch das aufnehmende<br>Notfallpriorität (ohne Vitalp.) gekoppel   |
|        |                |                                                                                  |
| TE     | AMFRAGEN       | Möglichkeit für zusätzliche wesentliche                                          |

#### Literatur

1. Gräff I, Ehlers P, Schacher S (2023) SINNHAFT- Die Merkhilfe für die standardisierte Zentralen Notaufnahme. Notfall Rettungsmed. https://doi.org/10.1007/s10049-023-

### Informationen: notfall-campus.de/ sinnhaft/




### **Taschenkarte**



### Studien 2024









- Angegeben werden die Dosisintervalle der ERC-Leitlinie 2021. Dosis ggf. nach 5-10 Min. wiederholen.
- [2] Nur nach strenger Indikationsstellung, Nach aktweler S3-Leitlinie Polytrauma/Schwerverletzten-Behandlung nicht mehr empfohlen.
  [3] Bei Kleinkindem vorgsweise Esketamin Kombination mit Midazodam optonal. Ab dem Schulkindalter sollte primär ein Opioid eingesetzt werden.
  [4] Fraktionierte Gabe, da pro Nassenloch max. 1 ml möglich.
- rti Fraktonente Gabe, da pro Nasenboch max. 1 mi móglich.

  Gil Verschiedene Verdinnungen sind übich Falls nur Ampulle I mil 7,5 mg vorhanden, muss diese mit 0,5 ml NaCl 0,9% verdürnt werden (10 ml-Spritze).

  Gil Hochstmögliche Konzentralen i. d. Literatur 50 mg/ml um auf Kruzinfusion verzichten zu können. Rundung ab 10 ml auf 1 ml Schritte.

  Gil Noht bei hänonynamischer Installistä anwenden, danne Esketamin wähler.

  Bi Prähospital meist nur maximal 2 g (= 40 ml der verdürnten Lösung) verfügbar.

  Gil Her wirdt wegene der größeren Eriologswahrscheinlichste bewusst mit der mittlieren Dosierung begonnen.

Haftungssausschluss
Alle Dosierungen wurden nach bestem Wissen und Gewissen
sorgfältig rechrerbiert und hier aufgeführt, entbinden jedoch den
Anwender nicht davon, die Dosierungen vor der Anwendung zu
überprüfen bzw. an den Zustand des Patierten anzupassen. Es kann keine Gewähr für die Richtigkeit übernommen werden! Einige der aufgeführten Medikamente sind bzgl. Indikation, Dosierung oder Applikationsweg nicht zugelassen. Version 08-2023

© Bernd Landsleitner & Florian Hoffmann Graphische Gestaltung: Andreas Adams









z. Zt. nur für iOS

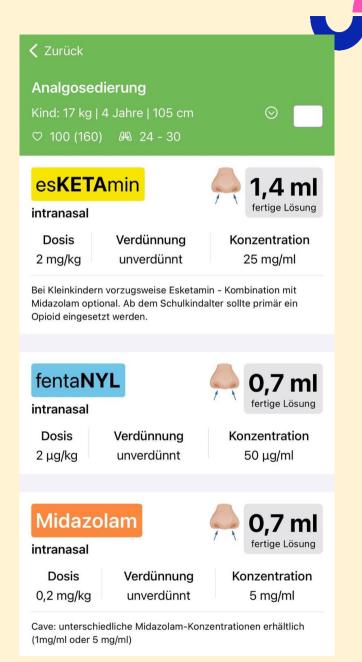
App für Android folgt.

https://kindernotfallapp.de/

















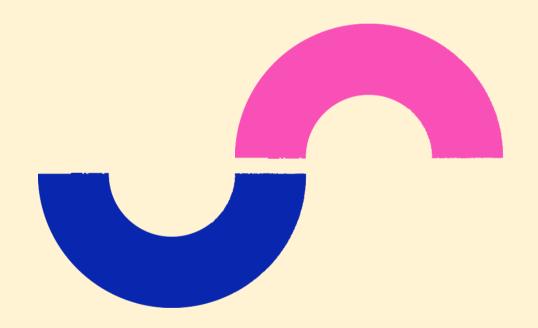






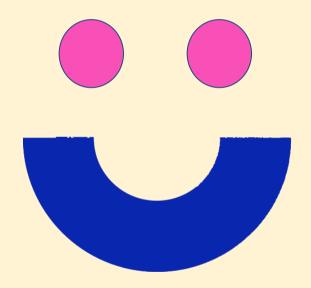






z. Zt. nur für iOS

App für Android folgt.

https://kindernotfallapp.de/




### Das war's!





### Danke!



